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a b s t r a c t

It is well known that Peer-to-Peer systems are generally featured with high flexibility and scalability,

enabling dynamic resources localization and mutualization, and allowing the nodes to freely join and

leave. But in some special environments such as mobile P2P networks, routing optimization, resources

reliability and availability are critical concerns. To deal with these issues, we propose a novel

architecture, termed hierarchical Peer-to-Peer model or HPM for short, based on Chord for improving

P2P network performance in the presence of such additional requirements as fault tolerance and self

organization. Specifically, HPM is composed of a set of hierarchical rings, each of which consists of the

nodes that are both physically and logically close to each other or we say they have physical proximity,

supporting inter and intra routing mechanisms. We show that the cost of lookup for HPM is

Oð
P4

i ¼ 1 log2ðniÞÞ, where ni represents the number of nodes on ring level i (with the maximum of 256

nodes in each ring in the case of four levels). Each node maintains a routing table with only 2� Oðlog2ðniÞÞ

entries, greatly facilitating HPM to work in resource-limited terminals such as mobile phones or PDA. In

particular, when HPM is combined with a broadcast mechanism, the lookup process can be significantly

improved (four hops). Our simulations and comparative studies demonstrate that HPM can achieve

satisfactory P2P performance with rapid convergence thanks to the cost-optimal lookup algorithm.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Peer-to-Peer (P2P) computing refers to a class of systems and
applications that employ distributed resources to perform critical
functions, such as resources localization in a decentralized man-
ner. In other words, one of the challenges in P2P computing is to
design a robust distributed system, which is composed of dis-
tributed and heterogeneous peer nodes, located in unrelated
administrative domains (Balakrishnan et al., 2003).

According to different design goals, a number of system variants
have been seen in P2P community. As defined in Peer-to-Peer
Working Group (2001), P2P allows file sharing or computer
resources and services by direct exchange between systems, or
allows the use of devices on the Internet periphery in a nonclient
capacity. In Steinmetz and Wehrle (2006), P2P is defined as a class of
applications that take advantage of resources-storage, cycle, content,
human presence-available in the Internet. Another salient feature is
that P2P nodes must operate outside DNS systems, out the control of

those central servers (Milojicic et al., 2002), since accessing to the
decentralized resources implies unstable connectivity and unpre-
dictable IP addresses in the operating environments.

The primary function of P2P networks is object location
(resource discovery and localization) that means mapping an object
ID to a node in the network, and retrieve this object with the same
mapping (Aberer et al., 2005). For efficient routing, each node
maintains Oðlog2ðnÞÞ pointers to other nodes in a typical P2P
network, called neighbor pointers, where n is the number of
network nodes. The number of hops required to locate an object
at application layer in a typical P2P network is Oðlog2ðnÞÞ (Aberer
et al., 2005). Each node stores neighbor pointers in a table (finger

table). The design of protocols to construct and maintain consis-
tent neighbor tables for network nodes that may join, leave, and
fail concurrently and frequently is a key issue for distributed P2P
networks.

The lookup cost constitutes also a critical issue for both
structured and unstructured P2P networks. Nevertheless, it is
reasonable to assume that the impact of structured P2P on
the lookup cost complexity, topology maintenance for resources
discovery and localization, in large scale networks, is more
significant. This complexity and maintenance is even more critical
and should be carefully considered when physical proximity
is taken into consideration. Different from the structured P2P
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network, the network topology of unstructured P2P networks is
based on a random graph and flooding-based routing, and the
flooding is only limited by a TTL (generating false negative).

In this paper, we propose a new structured Peer-to-Peer
architecture for resources discovery and localization called HPM,
it is derived from Chord. Nodes in HPM architecture are organized
as a multilevels hierarchical set of rings, closed in terms of
physical and logical proximities (for simplicity, we describe the

architecture in the case of four levels, and give a generalization for k

levels). Each level is composed of several rings. A ring is composed
of at most 256 nodes. A node can belong simultaneously to two
rings (called relay node). One of the main benefits of our proposed
architecture is the rapid convergence with an optimized cost of
the lookup process, while providing an efficient mechanism for
fault tolerance and scalability. The size of the routing table (finger

table) is also more compact compared to the main P2P architec-
ture (e.g. Chord); thus making HPM well appropriate for terminals
with limited or low capabilities such as PDA.

The paper is organized as follows: Section 2 gives a brief
overview of P2P networks, with a focus on the lookup problem.
The key elements of structured P2P systems such as distributed
hash table (DHT) are described. Related works on hierarchical P2P
networks are detailed on the end of section. Section 3 presents
and describes the proposed HPM architecture. Performance eva-
luation is given in Section 5. Finally, we conclude and give some
perspectives, especially related to security aspects.

2. Background and related work

Peer-to-Peer is relatively new in the areas of networking
and distributed systems and services (e.g. VoIP) (Singh and
Schulzrinne, 2004). P2P systems are characterized by several
generations, with transitions between generations motivated by
different goals. In this section, we describe and analyze the
different generations of P2P networks through some illustrations.

2.1. Chronological apparition of P2P Networks

The first P2P generation started with Napster files sharing
application. The main contribution of Napster was the introduc-
tion of a network architecture, where machines are not categor-
ized as client and server, but rather as machines that offer and
consume resources (Servant). All participants have more or less
the same functionality. However, in order to locate files in a
shared space, Napster provides a central directory. It is composed
of two services: a decentralized storage service, but with a
centralized directory service that constitutes a single point of
failure, and makes it sensitive to denial of service attack.

The single point of failure due to the central coordination in
the first solution (Napster) leads to the transition of a new kind of
P2P systems, aims to eliminate the central coordination. The
second generation of P2P systems started with Gnutella applica-
tion solving the problem of the central coordination, using a
purely distributed architecture, based on a flooding technique for
lookup. However, the problem of scalability constitutes a critical
issue in large network, due to the network traffic load generated
by the flooding mechanism for research and localization. More-
over, Gnutella system does not guarantee to locate an existing
data item (false negative), This is essentially due to the limited
search scope (TTL, generally equal to seven such as in http).

To reduce network traffic, clustering based solutions have
been proposed. These solutions use generally a super nodes (Xu,
2005; Bai et al., 2004; Tong et al., 2005; Chao et al., 2006; Li and
Vuong, 2004; Miasnikov et al., 2004; Lee et al., 2007; Joung and
Lin, 2002) (super nodes or super peers are nodes with higher

capabilities; they have additional functionalities compared to the

ordinary nodes). However, clustering based solutions present
some disadvantages. First, the search mechanism (lookup) is not
deterministic as it is based on flooding mechanism with a pre-
defined scope. Second, the choice of super peers constitutes a key
element for such systems. If the super peers are static, they can be
exposed to denial of service attacks (DoS), and in case of dynamic
super-peers, a significant overhead is needed for system stabiliza-
tion (self-organization), when these super peers join or leave the
system.

The third generation of P2P systems initiated by research projects
such as Chord (Stoica et al., 2003), CAN (Ratnasamy et al., 2001),
Tapestry (Zhao et al., 2004a), Pastry (Rowstron and Druschel, 2001),
Chord2 (Joung and Wang, 2007), Cycloid (Shena et al., 2006) and
Kademlia (Maymounkov and Maziére, 2002) use distributed hash
table (DHT) to generate a key for both nodes and data. A node (peer)
in such system requires a unique identifier, based on a cryptographic
hash of some unique attribute such as its IP address. Node identifier
and key value pairs are both hashed to one identifier space. The nodes
are then connected to each other in a certain predefined topology (e.g.
circular space (Chord), td-dimensional cartesian space (CAN)). Figure 1
shows the Chord architecture with 8 nodes.

Structured P2P networks (third generation) present three main
drawbacks, First, DHT is designed for exact-match query thus
limiting keyword searches. Second, substantial repair operations
are required in case of high churn rate. Third, hot-spots are
generated for too frequently accessed files (Shena et al., 2006).
However, the cost of lookup is much more optimized, greedy and
deterministic. So if a resource exists in the system, the requester
node is able to locate it with a minimal cost of lookup (in terms of

number of hops).
The common objective in all generation of P2P systems is to

optimize resources discovery and localization or lookup (in terms

of number of hops), but also the overhead, especially in a dynamic
and heterogeneous P2P system. Lookup problem can be resumed
as follows: a publisher insert an item X (e.g. a file or resource) in a
dynamic system, while somewhere else a consumer may access
and retrieve X. More generally, when the consumer is connected
to the system, how does the resource is located?

Since key lookup is probably the most frequently executed
operation, and essentially on all DHT systems (third generation), a
focus is done on lookup process performance. One of the main
performance criteria is the number of routing hops (cost of lookup)
which is a key factor for end-to-end latency. Nevertheless, latency
for each hop is relative to physical proximity, and plays also an
important role. Generally, adding some extra routing information
on each node increases the probability for providing better routes.
However, information and links management in the system
generate overhead in terms of processing time and bandwidth
consumption.

Because DHT is considered as a key element for the third
generation of P2P systems; but also for our proposed HPM, we
give a brief overview of the functional principle of DHT in the next
sub-section.

N0
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N2

N3
N4

N5

N6

N7

N6 + 1 = N7
N6 + 2 = N0
N6 + 4 = N2

N1 + 1 = N2
N1 + 2 = N3
N1 + 4 = N5

Finger table

Finger table

Fig. 1. Chord architecture.
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2.2. Distributed hash table (DHT)

A hash-table interface is an attractive foundation for a dis-
tributed lookup algorithm, because it places a few constraints on
the keys structure, but also on their associated resources. Hash-
table maps efficiently ‘‘keys’’ into ‘‘values’’. The main requirement
is that resource (or data) and nodes storing keys for each other
(key responsibility), can be identified using unique numeric key.
This organization is different from Napster and Gnutella, which
search for key words. The DHT implements one main operation:
Lookup (Key) resulting in a node identity (e.g. IP address and port

number), currently responsible for the given key. A simple
distributed storage application could use the interface as follows
(see Fig. 2): a particular and unique name is used to publish a file
or resource, it is converted to a numeric key using an ordinary
hash function such as SHA-1 or SHA-2 (Get (key)), and then a
lookup (Key) function is called. The publisher sends the file or
resource (Put(Key, Value)) to be stored at the resulting node
(data replication). Then the requestor converts the file identifier to
a key, calls the Lookup (Key) function, and requests the resulting
node for a file or resource copy.

Typically, DHT has the following design constraints:

� Few neighbors: each node should maintain only a small
number of active neighbors, storing for each neighbor its
physical IP address (from a P2P perspectives), and its logical
key partition. A typical constraint for the number of neighbors
is log2ðnÞ for a network with n machines (peers). By keeping
this number small, the arrival or departure of nodes from the
network, results in a limited and bounded number of update
messages Oðlog2ðnÞÞ in a typical DHT.
� Low latency: each node should be reachable from any other

node, with a limited number of network routing hops; this
requires that the neighborhood graph gets a small diameter.
Again, Oðlog2ðnÞÞ is a typical constraint.
� Greedy routing decisions: each node should be able to decide

how to forward keyed messages without consulting any other
node. These greedy decisions must find the short (typically

Oðlog2ðnÞÞ) path between any pair of nodes.
� Robustness: as nodes and links join and leave; the network should

remain mostly connected, and able to route packets. A necessary
condition for these features is a network with a nontrivial min-cut,
to allow multiple alternate routes for packets.

Figure 2 shows a typical DHT architecture.

2.3. Hierarchical P2P systems

Hierarchical P2P systems have been a research topic since the
introduction of P2P systems. They make sense to organize the

network in two or more hierarchical levels, while enabling
distinction between nodes with different capabilities. Efficient
nodes, with higher lifetime, belong to the highest hierarchical
level, while low performance nodes participate in the lower
levels. Thus, the impact of their short online times on the system
operation is reduced as much as possible. Membership dynami-
city is considered to be a critical issue for DHTs based mechan-
isms. The capability to better fit to the physical network is cited in
the literature as a further advantage of hierarchical systems (Zoels
et al., 2008).

In hierarchical DHTs, peers are organized into groups, each
group has its autonomous intra group overlay network and
lookup service. To find a peer that is responsible for a key, the
top level overlay first determines the group responsible for the
key, the responsible group then uses its intra group overlay to
determine the specific peer that is responsible for the key.
However, in our proposed HPM, the top level is not covered by
all requests, but only by request where the searching key is on
this level. Consequently, the request load balancing is guaranteed.

Garces-Erice et al. (2003) describe a hierarchical architecture
based on a Chord overlay network that can be used to improve
the routing performance. Super-peers save the information of all
their leaves while peers just send keep-alives messages to their
super-peer. This implies that super-peers are getting more stress-
ful if the number of peers increases. In Zoels et al. (2006), an
analysis of the costs of super-peers on a hierarchical structure is
done. Peers in each cluster do not maintain any structure and rely
only on their super-peer. The authors of Martinez-Yelmo et al.
(2008) propose a hierarchical architecture based on super-peers,
where a peer ID is composed by a Prefix ID and a Suffix ID. Prefix
ID is only routed at the super-peer level and the Suffix ID at the
peer level. Jelly (Hsiao and Wang, 2004) uses a node joining
mechanism as a fine-tuning tool similar to Grapes (Shin et al.,
2002) and a dynamic checking mechanism as a coarse-tuning tool
to balance the hierarchy.

Our proposed HPM architecture (HPM: a novel hierarchical

Peer-to-Peer model for lookup acceleration with provision of physical

proximity) is derived from Chord and based on hierarchical rings.
HPM takes into consideration the physical proximity and neigh-
borhood, with no distinction between nodes (peers) on different
levels. In HPM, the physical proximity of nodes belonging to level
iþ1 is higher than that of nodes at level i. So, the physical
proximity increases as the ring level increases.

The process of routing in P2P networks (lookup data) operates
at application layer. The overlay P2P network may lead to routing
inefficiency, as opposed to routing service provided by the
transport layer (IP). Our proposed HPM routing objectives are:
(1) minimizing the number of hops and delay, (2) locating nodes
that store data or resources in purely decentralized P2P networks,
and (3) but also, controlling the overhead while considering the
physical proximity of nodes.

In this context, HPM is considered as a scalable P2P protocol
that optimizes resources discovery and localization function in a
decentralized manner. It is based on cryptographic hash function
for resource identifier, IP addresses and port number for node
identifier. In existing DHT approaches, node and resource identi-
fiers are obtained from name or meta-information using SHA-1
algorithm. However, in HPM approach, node identifiers are simply
obtained from IP address of nodes. This is very important for four
mains reasons: (1) HPM node identifiers can be rapidly generated
from their IP address compared to SHA-1 algorithm using in
existing DHTs, (2) except in some very few cases such as NAT
traversal, IP addresses are supposed to be unique, so IDs collision
probability is extremely low, (3) physical proximity is taken into
account in our approach HPM, as most of the nodes located in the
same IP network domain; belong to the same HPM ring or to rings

ValueValue = Get (Key)

API Interface

Remove (Key)

API InterfaceAPI Interface

Put (Key, Value)

Distributed P2P Application

Distributed Hash Tables (DHT)

Lookup service

Lookup (Key)

PeerPeerPeerPeer

Node IP Adresse

Fig. 2. The DHT functional principle (Lua et al., 2004).
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that are close to, and (4) HPM architecture is organized in such a
way that the majority of nodes are placed on level 4 (2563 rings)
and are mainly responsible for storing resources (less for routing),
while the rest of the nodes are placed on the lower levels which
are mainly responsible for routing process (less for storing). This
organization leads to a better load balancing between nodes, for
routing and storing.

HPM architecture belongs to the third generation of P2P systems
(structured architecture), which is based on specific topology that
consider physical proximity.

Table 1 gives a synthetic comparison between HPM and some
other hierarchical DHTs. HPM does not use any existing architec-
ture as in Grapes or Jelly, but it uses its proper architecture. HPM
takes a better consideration of the physical proximity than the
main existing hierarchical DHTs.

The following section describes and analysis the HPM
architecture.

3. HPM: concept, principle and architecture

HPM is organized as a set of hierarchical rings based on a
multilayers topology (see Fig. 3). The IP address is splitted into
four equal parts such as p1, p2, p3, and p4, where 0rpio256.
Then, each part (pi) can take 256 values while each ring is
composed of at most 256 nodes. Each layer or level i is composed
of 256i�1 rings that connects neighboring nodes as follows:

� On level 1 (i¼1), there is one ring with a maximum of 256
nodes, 256ð1�1Þ

¼ 2560
¼ 1 ring;

� From each node on ring level 1, a ring will be constructed on
level 2 (i¼2), then 2561 rings will be constructed (256ð2�1Þ

¼

2561
Þ;

� From each node on rings level 2, a ring will be constructed on
level 3 (i¼3), then 2562 rings will be constructed (256ð3�1Þ

¼

2562
Þ;

Table 1
HPM vs some other hierarchical DHTs.

Scheme Architecture Routing Physical proximity

Grapes (Shin et al., 2002) Each sub-group of nodes are managed by a super

peer. The super peers form the second level

Flooding mechanism Yes, but only on sub-groups

Jelly (Hsiao and Wang,

2004)

Such as in Grapes, but the two levels are organized

on existing DHT

Existing lookup DHT Only on sub-groups

Hierarchical Kademlia

(Martinez-Yelmo et al.,

2008)

Hierarchical DHT, prefix node IDs is used for

connecting super peers

and suffix IDs for connecting nodes in the same

clusters (Kademlia)

Based on the prefix and sufix No physical proximity

consideration

Hierarchical Chord

(Garces-Erice et al., 2003)

Chord with two layers The first level for routing and

the second one for

maintenance

No physical proximity

consideration

HPM Hierarchical rings with no explicit super peers Deterministic and greedy Yes, physical proximity increases

as the ring level increases
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Fig. 3. HPM architecture.
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� From each node on rings level 3, a ring will be constructed on
level 4 (i¼4), then 2563 rings will be constructed (256ð4�1Þ

¼

2563
Þ.

For simplicity and illustration purposes, we describe the
architecture in case of four levels and then, we generalize the
topology for k levels.

In HPM, each node n is identified by a unique identifier, which is
the ith part of its IP address divided on four equal parts (1r ir4, in

case of four levels). i represents the level to which the node n belongs.
The resources are also identified by a unique identifier, generated by
the distributed hash tables using some cryptographic hash functions
(for load balancing). Each resource key is also composed of four parts
(a, b, c, and d). From the example illustrated in Fig. 3, the node with
IP address: 2.11.43.88 on ring level 1, gets the identifier N2 (first part

of its IP address). The identifier of IP node: 50.66.34.76 on ring level
2 is N66 (second part of its IP address); this node does not belong to
ring level one, as a node with identifier N50 already exists on the
first level. The node with IP address: 50.31.60.52 on level 4 gets the
identifier N52, as there are already node N50 on level 1, node N31
on level 2, and node N60 on level 3.

As an example, when a new node n1 with IP address
125.11.23.107 join the HPM system, if there is no node with
identifier N125 on level 1 (node with IP address 125.x.y.z), the node
n1 will be placed on level 1 with identifier N125 (first part of its IP

address).
When another new node n2 with IP address 125.12.59.77 join

the HPM system, it will not be placed on level 1 with identifier
N125 (first part of its IP address), because there is already a node
n1 with this identifier. Then n2 will be placed on level 2 with
identifier N12 (second part of its IP address).

When another new node n3 with IP address 125.12.34.88 joins
the HPM system, it will not be placed on level 1 with identifier
N125 (first part of its IP address), because there is already a node
n1 with this identifier. It will not be placed on level 2 with
identifier N12 (second part of its IP address), because there is node

n2 with this identifier, then n3 will be placed on level 3 with
identifier N34 (third part of its IP address).

When another new node n4 with IP address 125.12.34.54 join
the HPM system, it will not be placed on level 1 with identifier
N125 (first part of its IP address), because there is node n1 with
this identifier. It will not be placed on level 2 with identifier N12
(second part of its IP address), because there is node n2 with this
identifier, it will not be placed on level 3 with identifier N34 (third

part of its IP address), because there is node n3 with this identifier.
Then, node n4 will be placed on level 4 with identifier N54 (fourth

part of its IP address).
The main characteristic of the proposed architecture is the rapid

convergence of the lookup process, with a limited overhead. HPM
approach allows each node to maintain minimal state information.
Each node maintains only 2� Oðlog2ðniÞÞ, where ni is the number of
nodes on one ring, and in case of four levels, nir256. Thus, HPM is
well adapted for terminals with limited resources and capabilities,
such as mobile devices (e.g. PDA and mobile phone).

The HPM architecture is based on structured and hierarchical
rings. Each ring has 256 ð28

Þ nodes (maximum). The first level is
composed of one ring (super ring) and contains the nodes with IP
addresses that are different in the first part, with no restriction on
the other parts. It is recommended but not necessary that these
nodes are stable nodes such as in classical hierarchical P2P archi-
tectures. From the example illustrated in Fig. 3, a first node n with IP
address: 176.x.y.z, belongs to level 1, and gets identifier N176, while
the other nodes with IP address, such as 176.a.b.c do not belong to
the same ring (level 1) as node n, but to other sub-rings at lower
levels (2, 3 or 4). Each level connects a maximum of 256i�1 rings
(i corresponds to the number of level). One of the main HPM
characteristics is that nodes on the same network domain with
IP address such as: 50.31.60.123, 50.31.60.125, 50.31.60.150 and
50.31.60.209 belong to the same ring in the same level (level 4). In
this way, the physical and logical proximities are somehow taken
into account. On each ring of each level, nodes are organized and
ordered increasingly based on their identifiers. Each node maintains
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a routing table with IP addresses and port numbers, corresponding to
the neighboring nodes. Nodes in private network are managed and
represented by their server (NAT) (see RFC 1918 and RFC 4193).
Figure 3 illustrates the HPM architecture.

Each resource with an ‘‘a.b.c.d’’ type identifier, will be placed
and located at the node with IP address w.x.y.z, where w

(respectively, x, y, z) is the lowest value greater or equal to a

(respectively, b, c, d). In Fig. 3, data with key K50.31.240.252 is
placed on node N254, with IP address 50.31.240.254 on level 4,
because 50 (respectively, 31, 240 and 252) is the lowest value
greater or equal to 50 (respectively, 31, 240 and 254).

Most of the nodes in HPM architecture are placed on rings at
level 4 (see Section 4). In this level, nodes in each ring are logically
close, their IP addresses are similar in the first three parts, and
they are different only in the fourth part. This means that they are
in the same segment (physically close).

3.1. Finger table in HPM

Let be m the number of bits in the space of node identifiers on
one ring (e.g. m¼8 for 256 nodes). Each node n maintains a routing
table of at most m entries, called the finger table. The ith entry in
the finger table of node n contains the identifier of the first node s,
that succeeds n by at least 2i�1 on the identifiers circle, where
1r irm. We call node s the ith finger of node n. A finger table entry
includes both HPM identifier, IP address and port number of the
relevant node. Node participating on one ring has a similar finger
table as in Chord, but if this node participates on two rings, it gets a
double finger table entries (one for each ring). Figure 4 shows the
finger table of a node with IP address 50.10.20.3, belonging to two
levels (dark node, called also relay node), and then has two identifiers:
N50 on level 1 and N10 on level 2. This node participates on these
two rings for lookup and stabilization with the same manner.

3.2. Lookup process in HPM

For each ring k at level i, we use the ith part of the data key
for the lookup process, as in Chord. If the request succeeds on this

ring k, where the requestor node belongs to, the cost of lookup is
Oðlog2ðniÞÞ (ni is the number of nodes on this ring, nir256). In
case where the resource does not exist on the active covered
ring, the search or localization is done on ring level iþ1 or i�1,
in a deterministic manner (greedy routing), then the cost of
the lookup process is Oð

P4
i ¼ 1 log2ðniÞÞ, where ni is the number

of nodes on the covered ring at level i (on which the request

succeeded).
Figure 5 shows an example of the lookup process, node N11

search key K50:31:60:52, it uses key k50 on the first level based
on the finger table as in Chord, with the same manner K31 on the
second level, K60 on the third level and finally K52 on the fourth
level. The key will be located on node N52. Algorithm 1 gives a
pseudo code for the lookup process in HPM.

Algorithm 1. Lookup data pseudo code in HPM.

Lookup (Key c1c2c3c4)
1: Begin
2: Locate the node X (in the same ring) of IP Address p1p2p3p4,
where pi is the smallest value greater or equal to ci,

8iA ½1 .. 4�.

3: If(cj where cj4pj and jo i Then

4: go to level ði�1Þ and call fig15 (Key c1c2c3c4) (if i41,
otherwise, data does not exist)
5: Else
6: If the data is present Then
7: Loading data from the resulting node.
8: Else
9: go to level ðiþ1Þ and call Lookup (Key c1c2c3c4) (if io4,
otherwise, data does not exist)
10: End.

Theorem 1. The number of hops between any two arbitrary nodes in

HPM using the greedy Algorithm 1 is
P4

i ¼ 1 log2ðniÞ, where ni is the

number of nodes in each covered ring.
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Proof. In one ring, each node maintains a routing table of m entries;
the ith entry contains the identifier of the first node s that succeeds
n by at least 2i�1, then the number of hops between any two nodes
in one ring is log2ðniÞ, where ni is the number of nodes in this ring.
For the HPM lookup process, only one ring is covered at each level,
so to cover the four levels, the cost of lookup is

P4
i ¼ 1 log2ðniÞ. &

3.3. Maintenance, stabilization and fault tolerance

Maintenance, stabilization and fault tolerance of HPM archi-
tecture is efficiently ensured on one ring as in Chord, and between
rings by two additive links as follows: the predecessor of each
node belonging to two levels (relay node) is connected to its
successor in another ring. Thus, when this node fails, the network
is kept globally connected. As shown in Fig. 6, node N69/N81
(belongs to levels 1 and 2) has two immediate predecessors, N60 at
level 1 and N110 at level 2, which are connected, respectively, to
their two immediate successors N90 at level 2 and N74 at level 1.

3.3.1. Node join

Another important issues is to maintain an active topology and
preserve the ability to locate and update each key in the network.
For this, the bootstrapping constitutes a vital core functionality,
required by every Peer-to-Peer overlay network. Nodes intending
to participate in such overlay network; initially have to find at
least one node that is already part of this network. Like in Cramer
et al. (2004), four solutions applicable for the bootstrapping
problem exist, and are resumed as follows:

� Static overlay nodes-bootstrapping servers: in original P2P
network like Gnutella, initial bootstrapping was solved by
placing static nodes (e.g. enrolment servers) in the overlay.

This bootstrapping method requires low complexity, but at the
cost of scalability.
� Out-of-band address caches: in P2P overlay, nodes actively

report suitable nodes to HTTP-based caches. Nodes joining
the system contact the caches that are accessible via URLs, in
order to get a list of IP addresses.
� Random address probing: for large-scale overlay networks, the

random address probing could be adapted for bootstrapping.
A node entering the overlay network; randomly generates an
IP address from the global address space, and then tries to
establish a transport connection to this IP address using a
well-known port. In case of connection failure, another address
has to be defined and tested.
� Employing network layer mechanism: the discovery of overlay

nodes process during bootstrapping should be based on the
topological structure of the underlying network. If overlay nodes
exist in the same network segment, it is convenient and highly
efficient for network layer mechanisms to connect theses nodes, at
least for bootstrapping. In a multicast capable network, a multicast
group can be established for bootstrapping purposes.

To reduce system complexity, static overlay nodes-bootstrapping
servers (see Fig. 7) is considered for our proposed HPM architecture.

To participate in the network, two steps are needed for the
new node. After a join operation, the node initializes its finger
table (step 1), and gets a part of the resource key from its
neighboring nodes (step 2: transfer of key responsibility). The
description of these two steps is detailed below.

Finger table initialization: using nodes given by the bootstrap
server, the joining node will be placed in the network, and then
initializes its finger table by exchanging information with its
neighboring nodes. Remember that the ith entry in the finger table
at node n contains the identity of the first node s that succeeds
n, by at least 2i�1 on the identifier circle. If node n belongs
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Fig. 6. Additive links in HPM for maintenance and stabilization.
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simultaneously to two levels (it will has two identifiers), its finger
table contains two similar parts, one for each level.

Transferring keys: when a node n joins the HPM system, there is a
transfer of key responsibility to this new node n. All keys (for which

node n is now the new immediate successor in the same ring) are
transferred from the previous successor s. The node n becomes the

successor only for keys that where previously managed by the
successor s, and (keys A ]p, n], where p is now the predecessor of n).
So, n needs only to contact this unique node s to get all relevant keys.

3.3.2. Node leave

When a node n belonging to one level leaves the system, the
nodes (successors and predecessors which have a pointer to n) must
update their finger tables, following some transfer key operations.
In case, where the leaving node belongs to two levels (relay node),
the stabilization algorithm (Algorithm 2) is activated at each
neighbor node of n. For this algorithm, we use the following
notations: n: the identifier of the failed node (leaving node), and li,
liþ1: the two levels to which node n belongs.

Algorithm 2. Stabilization pseudo code in HPM.

leave (n, li, liþ1)
1: Begin
2: If (liþ1 is null) Then // n is not a relay node

3: Update the routing tables
4: Else // n is a relay node and belongs to two levels

5: If(ðn0,l0i,l
0
iþ1Þ where l0i ¼ liþ1 Then

6: If (l0iþ1 ¼ null) Then

7: l0i ¼ li; l0iþ1 ¼ liþ1;

8: Update the routing tables
9: Else
10: l0i ¼ li; l0iþ1 ¼ liþ1;

11: update the routing tables

12: leave (n0, li, liþ1)
13: End

The lookup service in HPM system is a continuous process (always

available), even in case of several node failures, as each node has
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Oðlog2ðniÞÞ successors (nir256), and then ðlog2ðniÞÞ
4 possible

routes from the ‘‘key’’ requestor node to the ‘‘key’’ locator node.

3.4. Lookup acceleration in HPM

The basic HPM lookup process as described in Section 3.2 can
be accelerated for specifics applications or conditions; when it is
combined with some known mechanisms, such as additional links
or broadcast techniques.

Acceleration using additionally links: for accelerating the lookup
process, each node n in any ring on level j maintains l�1 (three)
additional links as shown in Fig. 8. Each additional link connects a
node n to another node in ring level i, where 1r ir4, and ia j. As
an example, the three additional links for node N66 on level 2 are:
N60 on level 1, N13 on level 3 and N254 on level 4.

A node Nj searching for a key (lookup) sends simultaneously a
request Lookup-AL (Key c1c2c3c4) to their three successors on
the other levels using the additional links. Then the requestor and
the requested nodes use theirs finger tables to locate the resource
in theirs respective active rings using Algorithm 1. Algorithm 3
presents the pseudo code for the lookup process executing by
node Nj and using additional links (at nodes on level j).

Algorithm 3. Lookup acceleration in HPM using additional links.

Lookup-AL(Key c1c2c3c4)
1: Begin
2: Send the request Lookup-AL(Key c1c2c3c4) to the three

successors in rings levels i, where 1r ir4 and ia j using the
additional links, and execute Lookup(Key c1c2c3c4) on the
local ring.
3: At the reception of request Lookup-AL(Key c1c2c3c4),
execute Lookup(Key c1c2c3c4) on this active ring.
4: End.

Theorem 2. The number of hops between any two arbitrary nodes

on HPM using additionally links is 1þ log2ðniÞ hops, where ni is the

number of nodes in one ring.

Proof. Send the request Lookup-AL (Key c1c2c3c4) simulta-
neously to one node on each level using additional links is achieved
in one hop. Execute the request Lookup (Key ðc1c2c3c4Þ on each
ring that receives request Lookup-AL is achieved in log2ðniÞ

hops, consequently, the number of hops using additional links is
1þ log2ðniÞ. &

Acceleration using broadcast mechanism: another technique to
accelerate lookup process is to use a broadcast mechanism on
each ring, based on the ith part of resource key at each level. We
assume that on each ring, nodes are completely connected (full

mesh topology, without finger table). Thus, the number of control
messages generated is

P4
i ¼ 1ðni�1Þ, where ni is the number of

nodes on each ring covered by the request. Even with a broadcast
mechanism, the overhead does not have a significant impact on
the global performance of the system, as each ring is limited by a
maximum of 256 nodes. Algorithm 4 describes the lookup
acceleration process based on the broadcast mechanism. In this
case, the cost of lookup is four hops.

Algorithm 4. Lookup acceleration in HPM using a broadcast
mechanism.

Lookup-BM (Key c1c2c3c4)
1: Begin
2: locate the node (in the same ring) of IP address (p1p2p3p4)
where Pi is the smallest value greater or equal to ci, by a simple
broadcast message on the active ring.

3: IF(cj where cj4pj and jo i Then

4: go to level ði�1Þ and call lookup-MB (Key c1c2c3c4) (if

i41, otherwise, data does not exist)
5: Else
6: If the data is present Then
7: loading the data
8: Else
9: go to level ðiþ1Þ and call lookup-BM (key c1c2c3c4)

(if io4, otherwise, data does not exist)
10: End

Theorem 3. The number of hops between two arbitrary nodes in

HPM using broadcast mechanism on each ring is 4.

Proof. On each ring, the nodes are completely connected, with
one hop from any node to any other node. To cover the four levels
of HPM, four hops are needed. &

3.5. HPM architecture: extension and generalization

For HPM architecture depending on the number of levels, we
consider two cases: four levels in case of IPv4 addressing format
and 16 levels in case of IPv6 addressing format, and then we give
a generalization for any k levels, both in case of IPv4 and IPv6
addressing format.

� The HPM architecture based on a four levels topology as
previously described uses 8 bits for the identifiers space from
IPv4 address for each ring. The number of nodes on each ring is
256. The key structure is then c1c2c3c4.
� We use 8 bits from the IPv6 address for each ring, then the

maximum number of nodes for each ring is 256, but with a
maximum of 16 levels. The key structure becomes c1c2 . . . c16.
� The general case corresponds to the usage of k bits from an

IPv4 (resp. IPv6) address for each ring, then, the maximum
number of levels is 32=k (resp. 128/k). The key structure
becomes c1c2 . . . c32=k (resp. c1c2 . . . c128=k). When k¼32 (resp.

128) using IPv4 (resp. IPv6) address format, HPM topology is
limited to one ring, as Chord.

HPM topology as opposed to the common architecture for P2P is
based on a set of hierarchical rings. When the number of nodes
joining and leaving the HPM system increases, the number of
rings increases also, but with a controlled size for the finger
table (scalability). Figure 9 gives an illustration of the HPM
architecture in a large network.

3.6. HPM properties

The main properties that characterize HPM are:

� Scalability: logarithmic increase of cost of lookup (O
P4

i ¼ 1 log2ðni),

ni represents the number of nodes on one ring, it is equal to 256 in

case of four levels as described above) as a function of the number of
nodes, even in large scale situation. The finger table size is
2� log2ðniÞ. This size is compatible with terminals characterized
by limited capabilities such as PDA or mobile terminals. As a
result, HPM can be supported by terminals with low capabilities,
without significant performance degradation.
� Decentralization: HPM is completely distributed, thus improv-

ing the robustness of the global architecture (each node is

completely equivalent in terms of functionality), and without any
super peers such as in classical hierarchical P2P systems.
� Load balancing: distributed hash function spreads keys uni-

formly and evenly among nodes.
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� Fault tolerance: lookup process is active during simultaneous
node failures. The additive links guarantee and keep a com-
plete connected system.
� Cost: cost of lookup process in HPM is Oð

P
log2ðniÞÞ, and

provide better performance than Chord protocol as:
Oð
P

log2ðniÞÞoOðlog2ðnÞÞ, where n is the number of nodes in
Chord system, and ni the number of nodes on one ring in HPM
architecture. Some other mechanisms for lookup acceleration
(broadcast and additional links as described above) are possible
without significant performance degradation or extra over-
head (see Section 4).

Although NATs and firewalls traversal are not considered in this
paper, they constitute a common problem for HPM but also for all
kind of P2P applications. For HPM, a variety of existing techniques
such as Universal Plug and Play (UPnP), Simple traversal UDP
through Network Address Translators (STUN), Application Level
Gateway (ALG) or UDP/TCP hole punching can be used and
implemented (Hu). However, this is not the subject of this paper;
it will be investigated in future work.

4. HPM performance evaluation

In this section, we present some performance evaluations
through analytical1 and simulation. HPM architecture implemen-
tation2 has been carried out using a java platform. The metrics
that are defined to evaluate HPM performances are:

� Cost of lookup: it is defined as the number of hops or delay
needed for resource localization.
� Size of data structure: the impact of data structure stored in

each node.
� Number of rings at each level: the physical proximity on rings at

the lower levels is emphasized.

� Number of rings and levels for HPM with IPv6 and IPv4 address

format: adequate number of level configuration in HPM for
IPv6 and IPv4 address format.

We present the HPM architecture characteristics (the number of levels

and the number of rings at each level when using IPv4 or IPv6 address

format). We compare HPM with some representative DHTs in terms
of cost of lookup and routing information stored on each node for
routing and architecture management. We analyze the lookup in
terms of number of hops; but also in terms of lookup delay.

4.1. HPM architecture characteristics

In HPM architecture, each node has a few neighboring nodes
ð2� Oðlog2ðniÞÞ, nir256Þ, and uses a greedy routing decisions. The
cost of lookup can be optimized up to four hops, using a broadcast
mechanism.

For HPM, Figs. 10 and 11 show the number of rings at each level,
both HPM with 4 and 16 levels are considered. Level 4 (the last level

in case of four levels) contains a maximum number of ring ð2563
Þ,

with a maximum of 256 nodes on each one. At this level, nodes are
closed to in terms of physical and logical proximities. Thus, and this
is an important characteristic for HPM, the lookup delay is con-
trolled. As an example, nodes with IP addresses: 176.16.10.11,
176.16.10.12, 176.16.10.23, 176.16.10.43, 176.16.10.65, y are on
the same ring at level 4. Because HPM architecture takes into
consideration the physical proximity, it can be considered as a good
candidate for supporting real time applications.

Figures 12 and 13 show the number of levels depending on the
number of bits used for nodes identifiers space, considering both
IPv4 and IPv6 address format. As an example, using 8 bits in IPv4
address formats (resp. IPv6 address format), the number of levels
in HPM is 4 (resp. 7 levels). Thus, the number of levels has an
important impact on cost of lookup performance and finger table
size, but also on architecture complexity and topology stabiliza-
tion. When a 128 bits identifier space is used (IPv6 address format)
or 32 bits (IPv4 address format), HPM architecture is limited to one
ring, and then is equivalent to Chord architecture. The number of
levels can be controlled through the size (number of bits) of the
node identifier. The number of levels decreases as the number of
bits for node identifier increases and vice versa.

4.2. HPM vs other DHTs

This sub-section resumes HPM performance through a com-
parison with some representative DHTs. Most of the existing
protocols are considered scalable and fault tolerant, but with a
cost of lookup that is optimized for HPM, as compared to Chord
for example (

P
log2ðniÞr log2ðnÞÞ. As shown in Table 2, when

HPM is combined with a broadcast mechanism on each ring, the
cost of lookup is significantly improved (four hops). Each ring in
HPM architecture represents the Chord architecture; rings are
linked with relay node. HPM architecture is more complex in
terms of cost of stabilization than Chord architecture, particularly
in case of unstable nodes (e.g. short lifetime periods). However, the
cost of lookup is more optimized in HPM than in Chord especially
for large scale network. Consequently, HPM is more efficient and
performance for large scale and real time applications.

4.3. Finger table size evaluation

Figure 14 shows the finger table size for both Chord (which is

considered as a benchmark for structured P2P architecture) and
HPM. When the number of nodes reaches 216, the finger table size
in HPM becomes steady, and equal to 2� log2ðniÞ with nir256.
With Chord, the finger table increases logarithmically. The finger
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Fig. 9. HPM architecture in a large network.

1 Using Matlab V7.
2 1.5 GHz of CPU and 256 Mb of RAM.
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table size is a key factor for scalability, especially in critical
environments (e.g. mobile or sensor networks). Nodes with limited
capabilities (e.g. PDA) can participate efficiently in HPM, while for
Chord the impact on performance can be significant, when both
routing process and topology maintenance are supported simul-
taneously by limited capabilities nodes.

4.4. Cost of lookup in HPM

Figure 15 shows that the cost of lookup is significantly reduced
compared to Chord. For 256 nodes, the lookup in both HPM and
Chord is eight hops, and for 1024 nodes, the cost of lookup is 10
hops for Chord, and it is equal to nine hops in HPM. For 32,768
nodes, the cost of lookup is 15 hops for Chord while it is 13 for
HPM. In basic HPM, the cost of lookup is Oð

P
log2ðniÞÞ and in

Chord, it is equal to Oðlog2ðnÞÞ, where n is the number of nodes in
Chord, and ni is the number of nodes on one ring for HPM. This
shows that HPM is more efficient than Chord in terms of number
of hops for lookup.

Figure 16 shows the cost of lookup for HPM, when 16 levels
and four levels are considered, without any acceleration mechan-
isms (broadcast or additional links). As shown, for 69,904 nodes,
the cost of lookup on HPM with four levels is 15 hops, and it is
equal to 14 hops when 16 levels are considered. As a result, when
the number of levels increases; both the cost of lookup and the
finger table size decrease.

Figure 17 measures the cost of lookup in terms of latency for
both HPM and Chord. As an example, for 60 nodes, the lookup
delay is 10 ms for HPM (resp. 10 ms for Chord), and for 100 nodes,
the delay for a resource lookup from any requestor node to
the requested one is 13 ms on average (resp.15 ms for Chord).
The lookup increases in a logarithmic way, thus improving the
scalability while providing a rapid convergence for HPM. HPM
architecture provides an optimized lookup mechanism combined
with a rapid convergence. This is essentially due to one of the
main HPM characteristics that bring together nodes that are close
to in terms of physical and logical proximities.

5. Conclusion and future work

Peer-to-Peer networks allow resources discovery and localiza-
tion from a resource identifier (e.g. key words). In the context of
today networks (e.g. social networks) where resources but also
services tend to be created and provided by the end user, P2P
can be used for improving communication process, optimizing
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resources utilization, and for facilitating distributed information
exchange (Schoder and Fischbach, 2005).

Related works show that unstructured P2P networks perfor-
mance can be improved, by flooding techniques and random
walkers. Nevertheless flooding-based search mechanism is not
adapted to large scale systems. Although random walkers can
reduce flooding by some extent, it also creates significant network
overhead, due to the involvement of many forwarding peers.
Furthermore, with network flooding and random walkers false
negative exist.

Structured P2P networks are organized and based on a con-
trolled topologies. The data placement and lookup algorithms are
rigorously defined based on a distributed hash table (DHT). There
is no false negative, even in high dynamic context. Due to their
potential efficiency, robustness, scalability and deterministic data
location, structured networks have been studied intensively these
recent years. Nevertheless, optimizing both lookup and overhead

costs in such networks, characterized by high scalability and
dynamicity that still constitute key issues.

In this context, we propose a new approach that improves
resource discovery and location. Our proposed HPM architecture
provides this discovery/localization service, based on a complete
decentralized architecture, by determining with efficiency the
node responsible for storing the requested key’s value. The node
identifier is simply derived, as it is built from one part of its IP
address (and port number in private networks), while the resources
identifiers are generated by a hashing function from the resource
name (or meta-information) as key. One of the main character-
istics of HPM is the routing optimization at IP level, as it takes into
consideration the physical proximity while minimizing the num-
ber of hops for lookup process (cost of lookup).

Table 2
A comparison of some representative P2P DHTs.

Scheme Base network Routing table size Cost of lookup

Chord (Stoica et al., 2003) Ring OðlogðnÞÞ OðlogðnÞÞ

CAN (Ratnasamy et al., 2001) d-Dimensional Cartesian space Oðd� n1=dÞ O(d)

Pastry (Rowstron and Druschel, 2001)/Tapestry (Zhao et al., 2004b) Hypercube OðlogðnÞ Oð9L9ÞþOð9M9ÞþOðlogðnÞÞ

Viceroy (Malkhi et al., 2002) Butterfly OðlogðnÞÞ 7

ABC (Xu, 2005) Clustering OðlogðnÞÞ
O

logðnÞ

logðlogðnÞÞ

� �

HPM Hierarchical rings 2� OðlogðniÞ Oð
P

logðniÞÞ

HPM with additional links Hierarchical rings 2� Oðlog ðniÞþ3 Oð1þ logðniÞÞ

HPM with broadcast Hierarchical rings 2� ni 4
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Fig. 15. Cost of lookup (number of hops) for Chord and HPM.
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In a N-node HPM network, each node maintains routing
information for only 2� Oðlog2ðniÞÞ, where nioN is the number
of nodes on one ring, with a maximum of 256. Also HPM takes
into consideration the physical topology and proximity. On rings
corresponding to ‘‘level 4’’, nodes are physically and logically
closed to, thus reducing significantly the lookup delay. So, the
physical proximity increases as the ring level increases. In this
way, the cost of lookup in HPM architecture is

P4
i ¼ 1ðlog2ðniÞÞ. The

use of additional links or a broadcast mechanism on the topology
can significantly and efficiently accelerate the lookup process,
without a significant performance degradation. Performance eva-
luation and analyses show that results are globally satisfactory;
when considering HPM, the cost of lookup is significantly reduced
(e.g. four hops for the cost of lookup when using broadcast mechan-

ism). HPM uses a simple approach for node identifiers (compared

to SHA-1 or SHA-2), that are derived from their IP addresses. This
provides a certain flexibility and robustness, particularly in
dynamique environment. HPM can be also implemented using
either IPv4 or IPv6.

P2P networks tend to become a key element for Internet
communications, such as legacy applications (e.g. file sharing),
but also for VoIP (Singh and Schulzrinne, 2004). However,
efficient security and trust management constitute a serious
concern for P2P. In terms of perspectives, we envision two
directions: first, for taking into consideration security aspects,
security protocols such as Renuka and Shet (2009) can be
combined and extended in HPM context for large peers groups
communications. Second, a recent technique for application layer
multicast (Amad et al., 2011) can be implemented using the
proposed HPM for real time oriented applications.
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